Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Autophagy ; : 1-3, 2022 Nov 29.
Article in English | MEDLINE | ID: covidwho-20237401

ABSTRACT

The functions of mammalian Atg8 proteins (mATG8s) expand beyond canonical autophagy and include processes collectively referred to as Atg8ylation. Global modulation of protein synthesis under stress conditions is governed by MTOR and liquid-liquid phase separated condensates containing ribonucleoprotein particles known as stress granules (SGs). We report that lysosomal damage induces SGs acting as a hitherto unappreciated inhibitor of protein translation via EIF2A/eIF2α phosphorylation while favoring an ATF4-dependent integrated stress response. SGs are induced by lysosome-damaging agents, SARS-CoV-2 open reading frame 3a protein (ORF3a) expression, Mycobacterium tuberculosis infection, and exposure to proteopathic MAPT/tau. Proteomic studies revealed recruitment to damaged lysosomes of the core SG proteins NUFIP2 and G3BP1 along with the GABARAPs of the mATG8 family. The recruitment of these proteins is independent of SG condensates or canonical autophagy. GABARAPs interact directly with NUFIP2 and G3BP1 whereas Atg8ylation is needed for their recruitment to damaged lysosomes. At the lysosome, NUFIP2 contributes to MTOR inactivation together with LGALS8 (galectin 8) via the Ragulator-RRAGA-RRAGB complex. The separable functions of NUFIP2 and G3BP1 in SG formation vis-a-vis their role in MTOR inactivation are governed by GABARAP and Atg8ylation. Thus, cells employ membrane Atg8ylation to control and coordinate SG and MTOR responses to lysosomal damage.Abbreviations: Atg8: autophagy related 8; ATG: autophagy related; ATF4: activating transcription factor 4; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; GABARAP: GABA type A receptor-associated protein; G3BP1: G3BP stress granule assembly factor 1; LLOMe: L-leucyl-L-leucine methyl ester; LysoIP: lysosome immunopurification; mRNA: messenger ribonucleic acid; MTOR: mechanistic target of rapamycin kinase; NUFIP2: nuclear FMR1 interacting protein 2; ORF3a: open reading frame 3a protein; SARS-CoV-2: severe acute respiratory syndrome coronavirus 2; SG: stress granule; TIA1: TIA1 cytotoxic granule associated RNA binding protein.

2.
Microbiol Spectr ; 11(3): e0099423, 2023 Jun 15.
Article in English | MEDLINE | ID: covidwho-2316423

ABSTRACT

Coronaviruses (CoVs), including severe acute respiratory syndrome CoV (SARS-CoV), Middle East respiratory syndrome CoV (MERS-CoV), and SARS-CoV-2, produce double-stranded RNA (dsRNA) that activates antiviral pathways such as PKR and OAS/RNase L. To successfully replicate in hosts, viruses must evade such antiviral pathways. Currently, the mechanism of how SARS-CoV-2 antagonizes dsRNA-activated antiviral pathways is unknown. In this study, we demonstrate that the SARS-CoV-2 nucleocapsid (N) protein, the most abundant viral structural protein, is capable of binding to dsRNA and phosphorylated PKR, inhibiting both the PKR and OAS/RNase L pathways. The N protein of the bat coronavirus (bat-CoV) RaTG13, the closest relative of SARS-CoV-2, has a similar ability to inhibit the human PKR and RNase L antiviral pathways. Via mutagenic analysis, we found that the C-terminal domain (CTD) of the N protein is sufficient for binding dsRNA and inhibiting RNase L activity. Interestingly, while the CTD is also sufficient for binding phosphorylated PKR, the inhibition of PKR antiviral activity requires not only the CTD but also the central linker region (LKR). Thus, our findings demonstrate that the SARS-CoV-2 N protein is capable of antagonizing the two critical antiviral pathways activated by viral dsRNA and that its inhibition of PKR activities requires more than dsRNA binding mediated by the CTD. IMPORTANCE The high transmissibility of SARS-CoV-2 is an important viral factor defining the coronavirus disease 2019 (COVID-19) pandemic. To transmit efficiently, SARS-CoV-2 must be capable of disarming the innate immune response of its host efficiently. Here, we describe that the nucleocapsid protein of SARS-CoV-2 is capable of inhibiting two critical innate antiviral pathways, PKR and OAS/RNase L. Moreover, the counterpart of the closest animal coronavirus relative of SARS-CoV-2, bat-CoV RaTG13, can also inhibit human PKR and OAS/RNase L antiviral activities. Thus, the importance of our discovery for understanding the COVID-19 pandemic is 2-fold. First, the ability of SARS-CoV-2 N to inhibit innate antiviral activity is likely a factor contributing to the transmissibility and pathogenicity of the virus. Second, the bat relative of SARS-CoV-2 has the capacity to inhibit human innate immunity, which thus likely contributed to the establishment of infection in humans. The findings described in this study are valuable for developing novel antivirals and vaccines.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Antiviral Agents/pharmacology , SARS-CoV-2/metabolism , Nucleocapsid Proteins , Pandemics , Viral Proteins/metabolism , RNA, Double-Stranded
3.
Virus Evol ; 8(2): veac105, 2022.
Article in English | MEDLINE | ID: covidwho-2161170

ABSTRACT

Cross-species spillover events are responsible for many of the pandemics in human history including COVID-19; however, the evolutionary mechanisms that enable these events are poorly understood. We have previously modeled this process using a chimeric vaccinia virus expressing the rhesus cytomegalovirus-derived protein kinase R (PKR) antagonist RhTRS1 in place of its native PKR antagonists: E3L and K3L (VACVΔEΔK + RhTRS1). Using this virus, we demonstrated that gene amplification of rhtrs1 occurred early during experimental evolution and was sufficient to fully rescue virus replication in partially resistant African green monkey (AGM) fibroblasts. Notably, this rapid gene amplification also allowed limited virus replication in otherwise completely non-permissive human fibroblasts, suggesting that gene amplification may act as a 'molecular foothold' to facilitate viral adaptation to multiple species. In this study, we demonstrate that there are multiple barriers to VACVΔEΔK + RhTRS1 replication in human cells, mediated by both PKR and ribonuclease L (RNase L). We experimentally evolved three AGM-adapted virus populations in human fibroblasts. Each population adapted to human cells bimodally, via an initial 10-fold increase in replication after only two passages followed by a second 10-fold increase in replication by passage 9. Using our Illumina-based pipeline, we found that some single nucleotide polymorphisms (SNPs) which had evolved during the prior AGM adaptation were rapidly lost, while thirteen single-base substitutions and short indels increased over time, including two SNPs unique to human foreskin fibroblast (HFF)-adapted populations. Many of these changes were associated with components of the viral RNA polymerase, although no variant was shared between all three populations. Taken together, our results demonstrate that rhtrs1 amplification was sufficient to increase viral tropism after passage in an 'intermediate species' and subsequently enabled the virus to adopt different, species-specific adaptive mechanisms to overcome distinct barriers to viral replication in AGM and human cells.

4.
Int Immunopharmacol ; 108: 108764, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1899851

ABSTRACT

The prevalence of avian infectious bronchitis virus (IBV) is still one of causes inducing severe losses of production in the poultry industry worldwide. Vaccination does not completely prevent IBV infection and spread due to immune failure and viral mutations. ForsythiaeFructus and its compounds have been widely used in a lot of prescriptions of the traditional Chinese medicine for a long history, and it is well-known as safety and efficiency in heat-clearing and detoxifying. This study aims to investigate the anti-IBV activity and mechanism of phillygenin. The results showed that phillygenin inhibited IBV replication by disturbing multiple stages of the virus life cycle, including viral adsorption, invasion, internalization, and release in Vero cells. After being treated with 100, 125 and 150 µg/mL phillygenin, the expression of G3BP1 was significantly increased and the phosphorylation of PKR/eIF2α was activated, which increased stress granule, thereby triggering the antiviral response in Vero cells. The anti-virus activity of PHI was decreased when G3BP1 was interfered by si-RNA, and G3BP1 was down-regulated when PKR/eIF2α was interfered by si-RNA. In conclusion, our findings indicate that phillygenin activates PKR/eIF2α pathway and induces stress granule formation to exert anti-IBV, which holds promise to develop into a novel anti-IBV drug. Further study in vivo is needed to explore phillygenin as a potential and effective drug to prevent IB in poultry.


Subject(s)
Coronavirus Infections , Infectious bronchitis virus , Poultry Diseases , Animals , Chlorocebus aethiops , DNA Helicases/metabolism , DNA Helicases/pharmacology , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-2/pharmacology , Infectious bronchitis virus/physiology , Lignans , Poly-ADP-Ribose Binding Proteins , RNA , RNA Helicases/metabolism , RNA Helicases/pharmacology , RNA Recognition Motif Proteins , Stress Granules , Vero Cells
5.
Proc Natl Acad Sci U S A ; 119(21): e2123208119, 2022 05 24.
Article in English | MEDLINE | ID: covidwho-1860508

ABSTRACT

Middle East respiratory syndrome coronavirus (MERS-CoV) emerged into humans in 2012, causing highly lethal respiratory disease. The severity of disease may be, in part, because MERS-CoV is adept at antagonizing early innate immune pathways­interferon (IFN) production and signaling, protein kinase R (PKR), and oligoadenylate synthetase/ribonuclease L (OAS/RNase L)­activated in response to viral double-stranded RNA (dsRNA) generated during genome replication. This is in contrast to severe acute respiratory syndrome CoV-2 (SARS-CoV-2), which we recently reported to activate PKR and RNase L and, to some extent, IFN signaling. We previously found that MERS-CoV accessory proteins NS4a (dsRNA binding protein) and NS4b (phosphodiesterase) could weakly suppress these pathways, but ablation of each had minimal effect on virus replication. Here we investigated the antagonist effects of the conserved coronavirus endoribonuclease (EndoU), in combination with NS4a or NS4b. Inactivation of EndoU catalytic activity alone in a recombinant MERS-CoV caused little if any effect on activation of the innate immune pathways during infection. However, infection with recombinant viruses containing combined mutations with inactivation of EndoU and deletion of NS4a or inactivation of the NS4b phosphodiesterase promoted robust activation of dsRNA-induced innate immune pathways. This resulted in at least tenfold attenuation of replication in human lung­derived A549 and primary nasal cells. Furthermore, replication of these recombinant viruses could be rescued to the level of wild-type MERS-CoV by knockout of host immune mediators MAVS, PKR, or RNase L. Thus, EndoU and accessory proteins NS4a and NS4b together suppress dsRNA-induced innate immunity during MERS-CoV infection in order to optimize viral replication.


Subject(s)
COVID-19 , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Coronavirus Infections/immunology , Endoribonucleases/genetics , Endoribonucleases/metabolism , Epithelial Cells/metabolism , Humans , Immunity, Innate , Lung/metabolism , Middle East Respiratory Syndrome Coronavirus/genetics , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Nasal Mucosa , SARS-CoV-2/pathogenicity , Uridylate-Specific Endoribonucleases
6.
Brain Sci ; 12(4)2022 Apr 16.
Article in English | MEDLINE | ID: covidwho-1792815

ABSTRACT

The outbreak of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) signifies a serious worldwide concern to public health. Both transcriptome and proteome of SARS-CoV-2-infected cells synergize the progression of infection in host, which may exacerbate symptoms and/or progression of other chronic diseases such as Parkinson's disease (PD). Oxidative stress is a well-known cause of endoplasmic reticulum (ER) stress observed in both SARS-CoV-2 and PD. In the current study, we aimed to explore the influence of PKR-like ER kinase (PERK) stress pathway under SARS-CoV-2-mediated infection and in human cell model of PD. Furthermore, we investigated whether they are interconnected and if the ER stress inhibitors could inhibit cell death and provide cellular protection. To achieve this aim, we have incorporated in silico analysis obtained from gene set enrichment analysis (GSEA), a literature review and laboratory data. The neurotoxin, 6-hydroxy dopamine (6OHDA), was used to mimic the biochemical and neuropathological characteristics of PD by inducing oxidative stress in dopamine-containing neurons differentiated from ReNVM cell line (dDCNs). Furthermore, we explored if ER stress influences activation of caspases-2, -4 and -8 in SARS-CoV-2 and in stressed dDCNs. Our laboratory data using Western blot, immunocytochemistry and 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) analyses indicated that 6OHDA-induced toxicity triggered activation of caspases-2, -4 and -8 in dDCNs. Under SARS-CoV-2 infection of different cell types, GSEA revealed cell-specific sensitivities to oxidative and ER stresses. Cardiomyocytes and type II alveolar epithelial-like cells were more vulnerable to oxidative stress than neural cells. On the other side, only cardiomyocytes activated the unfolded protein response, however, the PERK pathway was operative in both cardiomyocytes and neural cells. In addition, caspase-4 activation by a SARS-CoV-2 was observed via in silico analyses. These results demonstrate that the ER stress pathway under oxidative stress in SARS-CoV-2 and PD are interconnected using diverse pathways. Furthermore, our results using the ER stress inhibitor and caspase specific inhibitors provided cellular protection suggesting that the use of specific inhibitors can provide effective therapeutic approaches for the treatment of COVID-19 and PD.

7.
Molecules ; 27(4)2022 Feb 21.
Article in English | MEDLINE | ID: covidwho-1715568

ABSTRACT

Baicalin is a major active ingredient of traditional Chinese medicine Scutellaria baicalensis, and has been shown to have antiviral, anti-inflammatory, and antitumor activities. However, the protein targets of baicalin have remained unclear. Herein, a chemical proteomics strategy was developed by combining baicalin-functionalized magnetic nanoparticles (BCL-N3@MNPs) and quantitative mass spectrometry to identify the target proteins of baicalin. Bioinformatics analysis with the use of Gene Ontology, STRING and Ingenuity Pathway Analysis, was performed to annotate the biological functions and the associated signaling pathways of the baicalin targeting proteins. Fourteen proteins in human embryonic kidney cells were identified to interact with baicalin with various binding affinities. Bioinformatics analysis revealed these proteins are mainly ATP-binding and/or ATPase activity proteins, such as CKB, HSP86, HSP70-1, HSP90, ATPSF1ß and ACTG1, and highly associated with the regulation of the role of PKR in interferon induction and the antiviral response signaling pathway (P = 10-6), PI3K/AKT signaling pathway (P = 10-5) and eNOS signaling pathway (P = 10-4). The results show that baicalin exerts multiply pharmacological functions, such as antiviral, anti-inflammatory, antitumor, and antioxidant functions, through regulating the PKR and PI3K/AKT/eNOS signaling pathways by targeting ATP-binding and ATPase activity proteins. These findings provide a fundamental insight into further studies on the mechanism of action of baicalin.


Subject(s)
Flavonoids/pharmacology , HSP70 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Animals , Dose-Response Relationship, Drug , Flavonoids/administration & dosage , Flavonoids/chemistry , Humans , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Protein Interaction Mapping
8.
Cells ; 10(11)2021 11 21.
Article in English | MEDLINE | ID: covidwho-1533816

ABSTRACT

Idiopathic or sporadic inclusion body myositis (IBM) is the leading age-related (onset >50 years of age) autoimmune muscular pathology, resulting in significant debilitation in affected individuals. Once viewed as primarily a degenerative disorder, it is now evident that much like several other neuro-muscular degenerative disorders, IBM has a major autoinflammatory component resulting in chronic inflammation-induced muscle destruction. Thus, IBM is now considered primarily an inflammatory pathology. To date, there is no effective treatment for sporadic inclusion body myositis, and little is understood about the pathology at the molecular level, which would offer the best hopes of at least slowing down the degenerative process. Among the previously examined potential molecular players in IBM is glycogen synthase kinase (GSK)-3, whose role in promoting TAU phosphorylation and inclusion bodies in Alzheimer's disease is well known. This review looks to re-examine the role of GSK3 in IBM, not strictly as a promoter of TAU and Abeta inclusions, but as a novel player in the innate immune system, discussing some of the recent roles discovered for this well-studied kinase in inflammatory-mediated pathology.


Subject(s)
Glycogen Synthase Kinase 3/metabolism , Immunity, Innate , Myositis, Inclusion Body/enzymology , Myositis, Inclusion Body/immunology , Animals , Humans , Inclusion Bodies/metabolism , Models, Biological , Signal Transduction
9.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: covidwho-1165017

ABSTRACT

Coronaviruses are adept at evading host antiviral pathways induced by viral double-stranded RNA, including interferon (IFN) signaling, oligoadenylate synthetase-ribonuclease L (OAS-RNase L), and protein kinase R (PKR). While dysregulated or inadequate IFN responses have been associated with severe coronavirus infection, the extent to which the recently emerged SARS-CoV-2 activates or antagonizes these pathways is relatively unknown. We found that SARS-CoV-2 infects patient-derived nasal epithelial cells, present at the initial site of infection; induced pluripotent stem cell-derived alveolar type 2 cells (iAT2), the major cell type infected in the lung; and cardiomyocytes (iCM), consistent with cardiovascular consequences of COVID-19 disease. Robust activation of IFN or OAS-RNase L is not observed in these cell types, whereas PKR activation is evident in iAT2 and iCM. In SARS-CoV-2-infected Calu-3 and A549ACE2 lung-derived cell lines, IFN induction remains relatively weak; however, activation of OAS-RNase L and PKR is observed. This is in contrast to Middle East respiratory syndrome (MERS)-CoV, which effectively inhibits IFN signaling and OAS-RNase L and PKR pathways, but is similar to mutant MERS-CoV lacking innate immune antagonists. Remarkably, OAS-RNase L and PKR are activated in MAVS knockout A549ACE2 cells, demonstrating that SARS-CoV-2 can induce these host antiviral pathways despite minimal IFN production. Moreover, increased replication and cytopathic effect in RNASEL knockout A549ACE2 cells implicates OAS-RNase L in restricting SARS-CoV-2. Finally, while SARS-CoV-2 fails to antagonize these host defense pathways, which contrasts with other coronaviruses, the IFN signaling response is generally weak. These host-virus interactions may contribute to the unique pathogenesis of SARS-CoV-2.


Subject(s)
Epithelial Cells/immunology , Epithelial Cells/virology , Immunity, Innate , Lung/pathology , Myocytes, Cardiac/immunology , Myocytes, Cardiac/virology , RNA, Double-Stranded/metabolism , SARS-CoV-2/immunology , A549 Cells , Endoribonucleases/metabolism , Humans , Middle East Respiratory Syndrome Coronavirus/immunology , Middle East Respiratory Syndrome Coronavirus/physiology , Nose/virology , Virus Replication , eIF-2 Kinase
SELECTION OF CITATIONS
SEARCH DETAIL